弱监督对象检测(WSOD)旨在仅训练需要图像级注释的对象检测器。最近,一些作品设法选择了从训练有素的WSOD网络生成的准确框,以监督半监督的检测框架以提高性能。但是,这些方法只需根据图像级标准将设置的训练分为标记和未标记的集合,从而选择了足够的错误标记或错误的局部盒子预测作为伪基真正的真实性,从而产生了次优的检测性能解决方案。为了克服这个问题,我们提出了一个新颖的WSOD框架,其新范式从弱监督到嘈杂的监督(W2N)。通常,通过训练有素的WSOD网络产生的给定的伪基真实性,我们提出了一种两模块迭代训练算法来完善伪标签并逐步监督更好的对象探测器。在定位适应模块中,我们提出正规化损失,以减少原始伪基真实性中判别零件的比例,从而获得更好的伪基真实性,以进行进一步的训练。在半监督的模块中,我们提出了两个任务实例级拆分方法,以选择用于训练半监督检测器的高质量标签。不同基准测试的实验结果验证了W2N的有效性,我们的W2N优于所有现有的纯WSOD方法和转移学习方法。我们的代码可在https://github.com/1170300714/w2n_wsod上公开获得。
translated by 谷歌翻译
对比性语言图像预处理(剪辑)受到广泛关注,因为它的学会表示形式可以很好地转移到各种下游任务上。在剪辑训练期间,Infonce目标旨在使正面图像对齐和分开的负面图像对齐。在本文中,我们在此过程中显示了表示分组的效果:Infonce客观间接通过随机出现的模式内锚将语义相似的表示形式组合在一起。我们引入了原型对比度图像预处理(原始的),以提高其效率并提高其针对模态差距的鲁棒性来增强这种分组。具体而言,原始利润在图像和文本空间之间建立了原型级别的歧视,从而有效传输了更高级别的结构知识。我们进一步提出了典型的背部翻译(PBT),以将表示形式分组与表示形式对齐,从而有效地学习了在较大的模态差距下有意义的表示。 PBT还使我们能够以更丰富的先验知识介绍其他外部教师。 ProtoClip通过在线情节培训策略进行了培训,这可以扩展到无限量的数据。结合上述新颖的设计,我们在概念标题上训练原始设计,并获得了 +5.81%的成像网线性探测改进,并且 +2.01%的Imagenet Zero Zero-shot分类改进。代码可在https://github.com/megvii-research/protoclip上找到。
translated by 谷歌翻译
本文介绍了使用变压器解决关键点检测和实例关联的新方法。对于自下而上的多人姿势估计模型,他们需要检测关键点并在关键点之间学习关联信息。我们认为这些问题可以完全由变压器解决。具体而言,变压器中的自我关注测量任何一对位置之间的依赖性,这可以为关键点分组提供关联信息。但是,天真的注意力模式仍然没有主观控制,因此无法保证关键点始终会参加它们所属的实例。为了解决它,我们提出了一种监督多人关键点检测和实例关联的自我关注的新方法。通过使用实例掩码来监督自我关注的实例感知,我们可以基于成对引人注定分数为其对应的实例分配检测到的关键字,而无需使用预定义的偏移量字段或嵌入像基于CNN的自下而上模型。我们方法的另一个好处是可以从监督的注意矩阵直接获得任何数量的人的实例分段结果,从而简化了像素分配管道。对Coco多人关键点检测挑战和人实例分割任务的实验证明了所提出的方法的有效性和简单性,并显示出于针对特定目的控制自我关注行为的有希望的方法。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译